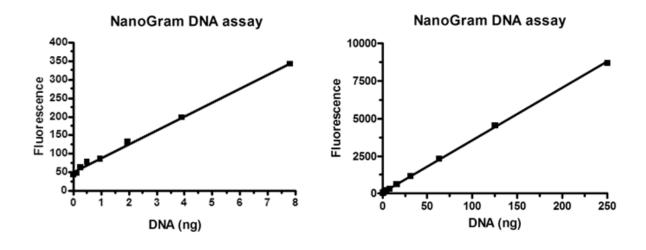
info@profoldin.com

INSTRUCTIONS

ProFoldin


NanoGram DNA Assay Reagent

CATALOG NUMBER

NDA500

INTRODUCTION

The NanoGram DNA Assay Reagent is for measurement of a wide range of DNA or RNA from nanograms to micrograms. The assay is based on the principle that DNA binds to the NanoGram fluorescence dye (Reagent D) and enhances the fluorescence intensity at 535 nm (excitation 485 nm).

The assay reagent (catalog number NDA500) includes 5 ml of 10 x Reagent D. It is for 2000 assays using 384-well plates or 500 assays using 96-well plates. Cuvettes may also be used for the assay.

DNA STANDARD CURVE

- 1. Dilute the 10 x Reagent D with water 10 fold to make 1 x Reagent D.
- 2. Prepare a series of standard DNA solutions with concentrations from 0.5 to 100 μg/ml.
- 3. Mix 10 μ l of the DNA solution with 100 μ l of the 1 x Reagent D in the wells of a 96-well plate for 5 min.

INSTRUCTIONS

ProFoldin

10 Technology Drive, Suite 40, Number 188 Hudson, MA 01749-2791 USA Tel: (508) 735-2539 FAX: (508) 845-9258 www.profoldin.com info@profoldin.com

Data Analysis

Plot the fluorescence intensity Fc and the DNA concentration [DNA] to generate the linear standard curve.

$$Fc = a [DNA] + b$$

Where the **Fc** values are from experimental data, the **a** and **b** values are from the linear fitting between the **Fc** values and the DNA concentrations.

UNKNOWN SAMPLES

Follow the same procedure to measure the fluorescence intensity **Fc** values from the unknown samples. Calculate the DNA concentrations in the unknown samples using the **Fc** values from the unknown samples and the **a** and **b** values from the standard curve.

$$[DNA] = (Fc - b) / a$$